Lecture 14
Plan:

1) Global min cut
2) Min T-odd cut.
3) Nest time: matroids.

Stoer-Wagnes alg for global mincut.
Setup: - Let $G=(V, E)$ undirected graph

- $u: E \rightarrow \mathbb{R} \geqslant 0$ nonnegative elise weighlib.

Algorithm idea:

- starting with vertex, build "max adjacency orderin", greedily adding vertex w/ highest cost to prev vertices.
eq. $u=1$
5 WRONG! uses min
- Consider cent from last vertex.
e.9.

dupliceto edges \rightarrow ald cork.
- Quin: best cut found this way is global minent.

Def: For $A, B \subseteq V$, define

$$
u(A: B)=\sum_{\substack{i \in A \\ j \in B}} u((i, j))
$$

Algorithm (stoer-Wagner)
$\operatorname{MINCuT}(G)$ \# outputs cut.
\square Let v, ans vertex of G

$$
\Delta n:=|v(G)|
$$

\# create ordering
Δ initialize $S=\left\{V_{i}\right\}$
\square for $i=2 \ldots n$:

$$
\begin{aligned}
& i=2 \ldots n: \max _{v \in V \backslash S} \begin{array}{l}
v_{i}=\arg _{n \in \operatorname{s}} u(S:\{v\}) \\
D S \leftarrow S \cup\left\{v_{i}\right\}
\end{array} .
\end{aligned}
$$

D if $n=2$:
Δ return $\delta\left(\left\{V_{n}\right\}\right)$
Dele:
P Get G^{\prime} by shrimps $\left\{v_{n-1}, v_{n}\right\}$.
\# recursive call
Δ Let $C=\operatorname{MTNCuT}\left(G^{\prime}\right)$
D return less costly of

$$
c, \delta\left(\left\{v_{n}\right\}\right)
$$

Analysis: uses a claim.
Claim: $\left\{v_{n}\right\}$ is a min $U_{n-1}-V_{n}$ cut.
Claim \Rightarrow Corrections:

- The mincut is either a min $V_{n-1}-V_{n} \omega t$, or not.
- If it is, claim \Rightarrow alg outputsit \checkmark
- If not, min curtin $G=$ mincaton G^{\prime}. induction $\Rightarrow a l g$ out puts
min cut in G^{\prime}
Proof of Claim:
Let $v_{1} \ldots . v_{n}$
be the ordering fromaloy.
- $A_{i}:=$ sequeve $v_{1} \ldots v_{i-1}$

- Consider candidate $v_{n-1}-v_{n}$ cut, i.e. $C \subseteq v$ s.t.

$$
v_{n-1} \in C, v_{n} \notin C
$$

- Want to show

$$
u\left(\delta\left(A_{n}\right)\right) \leq u(\delta(C)
$$

ie. out from $\left\{v_{n}\right\}$ is at least as good as C.

- define v_{i} to be critical if either v_{i} or $v_{i-1} \in C$ put not both.

note: V_{n} is critical blk $C V_{n-1}-V_{n}$ cut.
- Subclaim. Define $C_{i}:=A_{i+1} \cap C$ of v_{i} critical, then

highlighted ely mean all edges between sets.

Aubclaim suffices:
because V_{n} is critical,

$$
\begin{aligned}
& u(S: V \backslash S) \\
& =u(\delta(S))
\end{aligned}
$$

for amy $S \subseteq V$.

Subclaim $\Rightarrow \underbrace{u\left(\delta\left(A_{n}\right)\right)}_{1} \leqslant \underbrace{u(\delta(C))}_{1}$
\&for $i=n \quad u\left(A_{n}: V_{n}\right) \quad u\left(C_{n}: A_{n+1} \backslash C_{n}\right)$ LHS of θ RKS of $\&$.

Proof of Subclain:

- induction on seq. of critical vertices.
-(base:) \& true for fist critical v_{i} ""

or

(both LHS \&RHS of $*$ are just $U(A ; j ;\})$)
so $\$$ holds with equality).
- (inductive) Assume \& true for cortical v_{i}, let v_{j} nest critical.
egg.

Assume $v_{i} \in C, v_{j} \notin C$. (as in pic)
Is WLOG: replace C by $V \backslash C$ this preserves the RHS of $\&$ (switches $C_{j}, A_{j+1} \backslash C_{j}$, u symmetric).
eg.

$\leadsto V \backslash C$

- Then WTS

$$
\left.\Gamma A, s, 12 \backslash, \ldots / r \cdot \Delta \ldots \backslash C_{i}\right)
$$

$$
\begin{array}{ll}
L H S \\
u\left(A_{j}:\left\{v_{j}\right\}\right) & \left.=u\left(A_{i} \cdot v_{j}\right\}\right)+u\left(A_{j} \backslash A_{i}:\left\{v_{j}\right\}\right) \\
A_{i} & A_{j} \backslash A_{i+1} \\
v_{j}
\end{array}
$$

by our $\leq u\left(A_{i}:\left\{v_{i}\right\}\right)+u\left(A_{j} A_{i}:\left\{v_{j}\right\}\right)$
ordering
\downarrow

for i

$$
\text { induction } \leq u\left(C_{i}: A_{i+1} \backslash C_{i}\right)+u\left(A_{i} \backslash A_{i}:\left\{v_{j}\right\}\right)
$$

induction?

$$
\leq u\left(C_{j}: A_{j+1} \backslash C_{j}\right) \text { RHS }
$$

v_{j} is next critical.

purple contribution added, nothing removed because $A_{j} \backslash A_{i+1}$ is in C.

Running time:
Depends how you implement orderim.

- While building ordorin, must maintain lint f costs $C ; \ldots, C_{n}$ of remaining versts to A_{i}
- must quickly find minimum \& update new $C_{i+1}, \ldots C_{n}$ after picking v_{i}.
- This is what "priority queues" are for, e.g. "Fibonacci heap".
- with Fibonacci heap, can build orders in $O(m+\log n)$ time.
- total runtime |calls|. F

$$
O(n m+n \log n)
$$

- Compare to $\tilde{O}(n m \cdot n)=\tilde{O}\left(m n^{2}\right)$ from computing $O(n)$ maxflons.
- Negative weight/directed: Hao-Orlin Subomodulariter $\tilde{O}(m n)$
- Stor - Wagner can be extended to minimize a more general Class of functions than $s \longmapsto u(\delta(s))$.
- function $f: 2^{V} \rightarrow \mathbb{R}$ submodula
if $f(A)+f(B) \geqslant f(A \cup B)+f(A \cap B)$.
- Examples:
- $f(s)=|s|$, "modular" b/c holds w/ equality.
$\Delta f(S)=u(\delta(S))$ for EC. is u nomegative, even if G to prove directed.
$\Delta V=$ food items on menu, $S \subseteq V$ meal $f(S)=$ enjoyment of eating S

Subomodilarty equivalent to EC "diminishing marpoinal retierm": to prove.
For $S \geq T, v \notin S$,

$$
f(S+V)-f(S) \leqslant f(T+V)-f(T)
$$

- Stoer-Wagner algorithn can be estended to minimuse ary symuatric $(f(s)=f(u S) \forall S \in V)$. submadular function.
\rightarrow Quey ranne'95. (we wont cover).

Application of subnodularits:

Minimum T-odd cut

- $G=(v, E)$ undirected $u: E \rightarrow \mathbb{R}$ nomesative $T \leq V$ even size subset.
- Minimum T-odd cut problem:
- Sang S is T-add if .
- Nate: S Todd \Leftrightarrow WS T-odd.
- why do we care? Matching polytope!
Recall

THM (Edmonds) Let
$X=\{1 m: M$ matching in $G\}$.
Then $\operatorname{conv}(x)=P$ where

$$
\begin{aligned}
& P=\{x: \sum_{e \in \delta(u)} x_{e} \leq 1 \quad \forall v \in V . \\
& \sum_{e \in \in(S)} x_{e} \leq \frac{|s|-1}{2} \forall s \leq V \\
& \text { is|odd } \\
&\left.x_{e} \geqslant 0 \forall e \in E .\right\}
\end{aligned}
$$

- How can we quickly test if $x \in P$? exponential $\#$ of constraints!
- Padberf. Raw: Can express as min odd cut problem.

What's more, can get separation hyperplane if $x \notin P$.

- This can be used to optimize over P via ellipsoid alg, despite there bein no polynomial size LP for optimisinover P (Rothvoss).
matching polyfope.
- Today: s poly. time alg. for min T-add cut - crucially uses submodularity.

Algorithur $\operatorname{ALG}(G, T)$

1) Find min cut among those with at least ane vertex of T on each side:

$$
S=\arg _{\substack{\arg \min \\ \phi \in T \neq T}} u(\delta(S)) . \otimes
$$

- Tales $|T|-1$ min $\Delta-t$ cut computation: firs arbitram in T compute min st cat for all $t \in T$.
 v
isnTladd

2) If S is T-odd cut, is minimum; return 'S.

Else: If S T-even, use
Lemma: If S as in $*, \mid$ ST \mid even, \exists min T-odd cut A w/ $A \subseteq S$ or $A \subseteq V \backslash S$.

Pf: efta alg. (uses submod.)

- Lemma $\Rightarrow 2$ recursive calls suffice:

$$
\begin{aligned}
\Delta G_{1} & :=G / S \\
T_{1} & :=T \backslash S
\end{aligned}
$$

shrimp S to single verses)

$$
\text { remove } S
$$

$$
\text { from } T
$$

Return:

$$
\min \left\{A L G\left(G_{1}, T_{1}\right), A L G\left(G_{2}, T_{2}\right)\right\}
$$

e.g of recursion

Running time why polytime if 2 recurstre calls?

$$
R(k):=\begin{aligned}
& =\begin{array}{l}
\text { lougest posidle runtive } \\
\text { with }|T|=k .
\end{array} \\
& (|v| \leq n) .
\end{aligned}
$$

Then
a) $R(2)=\tau:=$ time for min y-t at.
b) $R(k) \leqslant \max (k-1) t+R\left(k_{1}\right)+k\left(k_{2}\right)$
sizes of $T s\left\{\begin{array}{l}k_{1} \geqslant 2 \\ k_{2} \geqslant 2\end{array}\right.$
$k_{1}+k_{2}=k$ step 2 calls.

By induction, $R(k) \leq k^{2} \tau$
PF: - Lase: True for $k=2$

- Inductive:

$$
\begin{aligned}
& R(k) \leqq \max _{k_{1} \geq 2}\left((k-1) \tau+R\left(k_{1}\right)+R\left(k_{2}\right)\right) \\
& k_{2} \geqslant 2 \\
& k_{1}+k_{2}=k \\
& { }_{\text {max }}^{2}+k_{2}^{2} \rightarrow \leq(k-1) \tau+4 \tau+(k-2)^{2} \tau \\
& \underset{\substack{k_{1} \Omega \\
k_{2} \Omega \Omega \\
k_{1}+k_{2}=k}}{ }=4+\quad=\left(k^{2}-3 k+7\right) \tau
\end{aligned}
$$

$$
\begin{aligned}
& \leq k^{2} \tau \\
& (k \geqslant 4 \quad b / c \quad k \text { even, } k \geqslant 2) .
\end{aligned}
$$

This: algonthn is polgnoninal.

- Now for the lemma.
- Proof uses submadularity.

Recall: $1 T$ even. of G
Lemma: Let S min cut "subject to $\phi \neq \operatorname{SnT} \neq T,|S \cap T|$ even, then
$\exists \min T$-odd cut A with

$$
\begin{aligned}
& A \subseteq S \\
& A \subseteq v \backslash S
\end{aligned}
$$

OR

Proof - Let B be any minimum Trod cut.

- Well show we can take

$$
A=S \cap B \quad \text { OR } A=S \cup B
$$

- Male a partitionaf T. use $\triangle A$

$$
\begin{array}{ll}
\text { Male a pas } \\
T_{1}=T((B \cup S), & T_{2}=(T \cap S) \backslash B^{T-c o d d} \text { cut. } \\
T_{3}=T \cap B \cap S, & T_{4}=(T \cap B) \backslash S
\end{array}
$$

and
 $\checkmark A$ $c \mathrm{c}$ S.

- By definition of B,S, know all pairwise umous nonempty:

$$
\begin{aligned}
& \left.\begin{array}{l}
T_{1} \cup T_{4} \neq \phi \\
T_{2} \cup T_{3} \neq \phi
\end{array}\right\} \phi \neq S \wedge T \neq T \\
& \left.\begin{array}{l}
T_{2} \cup T_{1} \neq \phi \\
T_{3} \cup T_{4} \neq \phi
\end{array}\right\} \begin{array}{l}
|B \wedge T| \text { odd } \\
\\
\\
\Rightarrow \phi \mid \text { even } \\
\end{array} \quad B \cap T \neq T .
\end{aligned}
$$

\Rightarrow either/ T_{1} and T_{3} nonemptes
or $T_{2} T_{1}^{1} /$ nonempty.

- Bar possible replacir $B \in V B$, mong assume T_{1} and T_{3} nonempty.

$$
\left(\begin{array}{rl}
\text { replaciy } B \leftarrow U(B) & T_{2} \leftrightarrow T_{3} \\
T_{4} \leftrightarrow T_{1}
\end{array}\right)
$$

- submadilonty of cut \Rightarrow

$$
\begin{aligned}
& u(\delta(S))+u(\delta(B)) \\
& (\Delta) \geqslant u(\underbrace{\delta(S \cup B)}_{<u(\delta(S))})+\underbrace{u(\delta(S \cap B))}_{\text {ama give odd }} . \\
& * \quad \sum_{x b / C S \text { minimal. }}^{\sim u(\delta(D))} \longleftarrow \operatorname{imagine}_{\text {but }}>n(\delta(B)) \text {. }
\end{aligned}
$$

(C) As $T_{1} \neq \phi \& T_{3} \neq \phi, \quad S \cap B$ As $T_{1} \neq \phi \varnothing$ separate vertices of T.
and $S \cup B$ sep

(both $S \cap B, S \cup B$ still "candidates for $S^{\prime \prime}$)
One of $S U B, S \cap B$ is T-even \& the other T-odd because

$$
\begin{aligned}
& |(\Omega \cap B) \cap T|+|(S \cup B) \cap T|=\left|T_{2}\right|+2\left|T_{3}\right|+\left|T_{4}\right| \\
& =|S \cap T|+|B \cap T|=\text { is odd. . }{ }_{c} c \text { steven }
\end{aligned}
$$

Summary: ore of SUB, $S \cap B$ is candictate " S ", one is candace " B ".

- $\Delta \Rightarrow$ whichever of SUB, SMB odd has cut value $\leq u(\delta(B))$ the other $\leq u(\delta(S))$.
see (else the other violates orange $*$ minimaling of B or S due to Δ).
\Rightarrow Either, $S \cup B, S \cap B$
is min T - $\partial 0$ d cut.
(whichever is odd).

